Return to: Encyclopedia Home Page Table of Contents Author Index Subject Index Search Dictionary ESTIR Home Page YCES Home Page
(January, 2001)
![]() |
| Fig. 1. Crystal structures of carbon. |
A more exotic form of carbon is the so-called "buckyball", discovered in 1985. It has a structure similar to a soccer ball. This discovery led to the 1996 Nobel Prize in Chemistry to H.W. Kroto, R.F. Curl, and R.E. Smalley. A typical structure of a buckyball (see Figure 1) contains 60 carbon atoms (C60) in a spherical structure consisting of 20 hexagons and 12 pentagons arranged on the surface. The more scientific name for this form of carbon is buckminsterfullerene (also called "fullerene"), so named for R. Buckminster Fuller (1895-1983) who developed the architectural structure know as the geodesic dome. This structure has a strong resemblance to the design of a soccer ball. The discovery of the buckyballs in 1985 has led to an expansion of research on C60 and variations of this structure. Evidence is available to show that buckyballs are present in nature, found in meteorite craters in Canada and New Zealand.
![]() |
![]() |
| Fig. 2. High-resolution transmission electron micrographs of a carbon black before (top) and after (bottom) graphitization. |
The micrograph on the top shows the amorphous structure of carbon black. No well-defined structure can be observed that would be indicative of the layer planes associated with graphite. However, after heating to 2800oC (5072oF) in an inert environment for 2 hours, the amorphous structure rearranges to form discrete layer planes indicative of graphite structure (micrograph on bottom). The distance between the layer planes near the surface of the particle approaches 0.3354 nm (nm = billionth of a meter), the theoretical value, but closer to the middle of the particle, only minimal changes occur. The reason for this difference in structure between the surface and interior of the particle can be explained as follows. Near the surface, the carbon atoms have more freedom of motion to rearrange. In the interior, motion is inhibited by the presence of the surrounding carbon atoms, and rearrangement to form the graphite layer structure becomes more difficult.
A carbon black called acetylene black, which is commonly used as an electrically conductive additive in batteries, is produced by the thermal decomposition of acetylene gas. The partially oxidative combustion of furnace oils, which are derived from petroleum refining, are also used to produce carbon blacks (furnace blacks). Other common organic materials such as wood, synthetic fibers, resins, and sugar are also precursors for carbon. One early starting material was charcoal, but it has been replaced by petroleum coke. When these materials are heated to produce carbon (carbonization), the chemical structure of the materials is destroyed and gases can form that contain carbon, oxygen, and hydrogen, depending on the original composition and ambient environment. The remaining solid product is mainly carbon.
Three common precursors of carbon are coke, petroleum coke, and coal-tar pitch. Coke is a solid, high in carbon content, that is produced by heating organic materials which has passed, at least in part, through a liquid or liquid-crystalline state during the carbonization process. Petroleum coke is a carbonization product of high-boiling hydrocarbon fractions (heavy residues) obtained in petroleum processing. It is the general term for all special petroleum coke products such as green, calcined, and needle petroleum coke. Coal-tar pitch is the residue produced by distillation or heat treatment of coal tar. It is a solid at room temperature, consists of a complex mixture of numerous predominantly aromatic hydrocarbons and heterocyclics, and exhibits a broad softening range instead of a defined melting temperature. Mixtures of coke and coal-tar pitch are heated to high temperature, usually above 2500oC (4532oF), to form solid carbon structures that are graphitic (that is, graphite-like).
Graphite is also found in nature. Natural graphite is classified as flake, vein, or microcrystalline (amorphous), depending on the crystallite size and particle shape. Major sources of natural graphite are found in Mexico, China, and Brazil. Flake graphite is anisotropic (that is, its properties depend on the crystallographic direction) and has crystallinity similar to that of single-crystal graphite. One problem with many sources of natural graphite is their high ash content (for example, iron, silicon), which can be as high as 25%. Much of this ash is removed by leaching in concentrated acid or exposure to halogen gases. Synthetic or artificial graphite is produced by heating a precursor carbon such as petroleum coke to temperatures in the range of 2800oC (5072oF) or higher.
A variety of amorphous carbons such as carbon black, active carbon, and glassy carbon are available. With the exception of glassy carbon, these amorphous carbons generally have high surface area, high porosity, and small particle size. Carbon blacks, for example, are available with surface areas that are >1000 m2/g, particle size <50 nm (nm = billionth of a meter), and density much less than the theoretical value for graphite (2.25 g/cm3). In addition, the morphology of carbon blacks may resemble individual spheres of about 250-nm diameter (that is, thermal blacks) or a cluster of fused carbon particles of <50-nm diameter (that is, furnace blacks). Active carbons are typically granular carbons that are produced by carbonizing materials such as wood (charcoal) coconut and other fruit shells, and low-rank coals. The resulting carbon is activated by treatment with gas (steam activation) or chemical processing. The end product is a carbon material with high surface area (>1000 m2/g) and extensive micropores (pore size <2 nm). It is this microporosity that contributes to the high adsorption properties, and is desirable for applications such as the removal of unwanted organic and inorganic species in water, elimination of noxious gases in air (for example, in gas masks), etc.
| Table I. Desirable properties of carbon and |
| graphite for electrochemical applications |
| good electrical conductivity |
| acceptable corrosion resistance |
| availability in high purity |
| low cost |
| high thermal conductivity |
| dimensional and mechanical stability |
| light in weight and ease of handling |
| availability in a variety of physical structures |
| ease of fabrication into composite structures |
![]() |
| Fig. 3. Schematic representation of the cross-section of a typical alkaline-manganese dioxide cell. |
The outer case is usually made of a thin metal sheet. Coarsely ground manganese dioxide is mixed with an equal volume of carbon to form the cathode (positive electrode). Carbon powders such as acetylene black and graphite are commonly used to enhance the conductivity of the positive electrodes in alkaline batteries. The particle morphology plays a significant role, particularly when carbon blacks are used in batteries as an electrode additive to enhance the electronic conductivity. One of the most common carbon blacks that are used as an additive to enhance the electronic conductivity of electrodes that contain metal oxides is acetylene black. A suitable carbon for this application should have characteristics that include: (i) low resistivity in the presence of the electrolyte and active electrode material, (ii) absorb and retain a significant volume of electrolyte without reducing its capability of mixing with the active material, (iii) exhibit compressibility and resiliency in the cell, and (iv) contain only low levels of impurities. Graphite has higher electrical conductivity than acetylene black but it is not capable of retaining the same volume of electrolyte or demonstrating the same mechanical properties in the cell. Acetylene black has a well-developed chain structure, and it is this characteristics which provides the capability to retain a significant amount of electrolyte. Acetylene black is capable of retaining over three times as much electrolyte (cm3 electrolyte/g carbon) as graphite, which has a very low structure. The capacity of Leclanche cells is dependent on the amount and type of carbon black that is used. Generally about 55 volume % carbon black mixed with manganese dioxide yields the maximum capacity. This composition agrees closely with the minimum in the electrical resistivity of the electrode mixture. The high electronic conductivity, chemical inertness and low cost are beneficial for the use of carbon for electrode materials in these batteries.
A carbon rod is used as a current collector for the positive electrode in cells. The carbon rod is made by heating extruded mixture of carbon (petroleum coke, graphite) and pitch that serves as a binder. A heat-treatment temperature of about 1100oC (2012oF) is used to carbonize the pitch and to produce a solid structure with low resistance. For example, heat treatment reduced the specific resistance from 1 to 0.0036 ohm cm and the density increased from 1.7 to 2.02 g/cm3.
Another example of the use of graphite as an additive to improve the electronic conductivity of an electrode can be found in the iron/nickel oxide (Fe/NiOOH) cell developed by Thomas Edison in the early 1900s. The positive electrode, which contained graphite (20-30% graphite flake), degraded rapidly during charge because of oxidation and swelling. This experience led to the development of electrolytic nickel flakes and eventually to the porous nickel plaque for use in nickel oxide electrodes.
One of the more exciting applications of carbon in batteries occurred in the early 1990's with the commercialization of lithium-ion cells by Sony Corporation. This development has led to a major expansion in the application of rechargeable lithium batteries for portable electronic devices such as cellular telephones, portable computers, camcorders, etc. Until the advent of the rechargeable lithium-ion cell, the only lithium cells that were commercially available were nonrechargeable batteries. The successful utilization of a carbon host to store lithium ions in the rechargeable negative electrode has led to the commercial development of lithium-ion cells. In commercial cells, the positive electrode is primarily a lithiated metal oxide, which also contains graphite to improve the electronic conductivity of the electrode.
The electrochemical reaction at the negative electrode in lithium-ion cells is the intercalation of lithium ions into graphite: the lithium ions in the electrolyte enter the space between the layer planes of graphite during charge. The distance between the graphite layer planes expands by about 10% to accommodate the lithium ions. The resulting material can be chemically represented as LixC6. When the cell is discharged, the lithium ions are removed from the graphite structure and return to the electrolyte. The maximum amount of lithium ions that is stored in graphite is equivalent to x = 1 (LiC6). Other carbons have been used which yield values of "x" that may be greater or less than one. One of the attractive features of this electrode is long cycle life that is observed when the reversible insertion and removal of lithium ions occur without mechanical degradation of the graphite structure. Currently, lithium-ion technology represents the most rapidly growing (in production volume) rechargeable battery system in the world.
chemical energy ==> heat ==> mechanical motion ==> electricity
On the other hand, fuel cells follow the route:
chemical energy ==> electrochemical reaction ==> electricity
![]() |
| Fig. 4. Arrangement of the major cell components in a fuel cell stack. |
![]() |
| Fig. 5. High-resolution transmission electron micrograph platinum particles dispersed on carbon. |
A fuel cell differs from the conventional battery in several respects. The battery is an energy storage device; that is, the maximum energy that is available is determined by the amount of chemical reactant stored in the battery itself. Thus, the battery will cease to produce electrical energy when the chemical reactants are consumed (that is, discharged). In a secondary battery, the reactants are regenerated during charge, which involves putting energy into the battery from an external source. The fuel cell, on the other hand, is an energy conversion device, which theoretically has the capability of producing electrical energy for as long as the fuel and oxidant are fed to the electrodes. In reality, degradation or malfunction of components limits the practical operating life of fuel cells.
The primary interest in PAFCs is for stationary power generation, whereas PEMFC's have attracted widespread interest for use in transportation applications. Without the availability of carbon as a reasonable stable and electronically conductive component, both the PAFC and the PEMFC would be even further from commercialization. Presently, cost is still a significant issue, but field tests of PAFCs have demonstrated that carbon meets the performance and life requirements in this application.
![]() |
| Fig. 6. Function of carbon electrode in an electrochemical capacitor. |
The operating principle of a carbon electrode in an electrochemical capacitor is illustrated graphically in Figure 6. When a voltage is applied to the capacitor (and the capacitor is charged), the carbon electrodes attract positive or negative charges (that is, ions that carry the charges) to form double layers at the interfaces. (The figure shows only one electrode and the opposite arrangement of charges exist at the other carbon electrode.). The presence of these charged interfaces is the source of stored electrical energy, which when discharged releases electrons through the external circuit that is connected to the carbon electrodes. In the discharged state, the positive and negative ions are dissipated in the electrolyte and electrode. The major drawback of carbon as an electrode material is its high resistivity because of the poor particle-to-particle contact between the small carbon particles that provide the high surface area. The high resistivity limits the charge/discharge rates. Typical applications include back-up power for small computers and memory devices.
The distinction between a battery and electrochemical capacitor is not clear-cut. A battery relies on electrochemical reactions that involve active materials in the electrode. In this case, active means that the materials participate in the reaction, and a transfer of electrons between the active material and ionic species in solution occurs across the solid/liquid interface. On the other hand, in an "ideal" electrochemical capacitor that utilizes carbon, the electrodes play a passive role. That is, the electrode surface only participates by serving as sites for charged species to accumulate and no electron transfer occurs across the solid/liquid interface. While in a "practical" electrochemical capacitor there may occur some surface oxidation/reduction on the electrodes, that is, it operates partly as a capacitor, partly as a battery.
Carbon is used in many industrial electrolytic processes:
Aluminum production
Brine electrolysis
Industrial organics
and in
Batteries
Fuel cells
PEM fuel cells
Listings of electrochemistry books, review chapters, proceedings volumes, and full text of some historical publications are also available in the Electrochemistry Science and Technology Information Resource (ESTIR). (http://electrochem.cwru.edu/estir/)
Return to: Top Encyclopedia Home Page Table of Contents Author Index Subject Index Search Dictionary ESTIR Home Page YCES Home Page